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ADS system: Simplest case

Consider 3D Einstein scalar system

S =
1

16πG

∫
d3x
√

g
(
R − gab∂aφ∂bφ+ 2

)
From this action the Einstein equation becomes

Rab + 2gab = ∂aφ∂bφ

and the scalar equation of motion is given by

∂a(
√

ggab∂bφ) = 0

With φ = 0, one may find the usual ADS solution in 3D: (in Poincare
coord.)

ds2
3 =
−dt2 + dx2 + dξ2

ξ2

At the boundary (ξ → 0), the space-time is just ds2
2 = −dt2 + dx2.



Janus solution: Now with φ 6= 0

We take an Ansatz:

ds2
3 = dr2 + f (r)

−dt2 + dξ2

ξ2 , φ = φ(r)

The solutions of Einstein equation and matter equation: (Bak,
Gutperle and Hirano, 2007)
the metric sector:

f (r) =
1
2

(
1 +

√
1− 2γ2 cosh(2r)

)
the dilaton sector:

φ(r) =
1√
2

log

(
1 +

√
1− 2γ2 +

√
2γ tanh(r)

1 +
√

1− 2γ2 −
√

2γ tanh(r)

)
Note that the dilaton approaches two constant values at the
boundaries

lim
r→±∞

φ(r) =
1√
2

log

(
1 +

√
1− 2γ2 ±

√
2γ

1 +
√

1− 2γ2 ∓
√

2γ

)
≡ ±φas



For later use it is also convenient to express γ in terms φas:

γ =
1√
2

tanh
√

2φas

For small value of γ, dilaton field has the expansion

φ(r) = γ tanh r +
γ3

6
(3 tanh r + tanh3 r) + · · ·



Janus deformation in Poincare coordinates

Introducing an angular coordinate µ by

dr =
√

f (r)dµ ,

this solution can be presented by

ds2
3 = f (µ)

(
dµ2 +

−dt2 + dξ2

ξ2

)
, φ = φ(µ)

where

f (µ) =
κ2
+

sn2(κ+(µ+ µ0), k2)
=
κ2
+dn2(κ+µ, k2)

cn2(κ+µ, k2)

φ(µ) =
√

2 ln
(

dn(κ+(µ+ µ0), k2)− kcn(κ+(µ+ µ0), k2)
)

=
1√
2

ln
(

1− k sn(κ+µ, k2)

1 + k sn(κ+µ, k2)

)
with

κ2
± ≡

1
2
(1 ±

√
1 − 2γ2), k2 ≡ κ2

−/κ
2
+ =

γ2

2
+ O(γ4)

µ0 ≡ K (k2)/κ+ =
π

2

(
1 +

3
8
γ2 + O(γ4)

)
This describes Janus deformation of the Poincare patch geometry.



Planar BTZ Black Holes

Three dimensional Janus black holes corresponds to a dilaton
deformation of the planar BTZ black hole solution.
The Eulclidean BTZ black hole in 3D (Banados:1992) can be written
as

ds2 =
1
z2

[
(1− z2)dτ2 + dx2 +

dz2

1− z2

]
z = 1: the horizon z = 0: ADS boundary.
It is regular at z = 1 if the Euclidean time τ has a periodicity 2π. To
see this, let us change the variable

z̃2 = 1− z2

In this coordinate system the black hole looks like

ds2 =
1

1− z̃2

[
z̃2dτ2 + dx2 +

dz̃2

1− z̃2

]
,

and now the AdS boundary is located at z̃ = 1 while the horizon at
z̃ = 0.
Note

dz̃2

1− z̃2 + z̃2dτ2 ∼ dz̃2 + z̃2dτ2



Therefore the corresponding temperature can be identified as

T =
1

2π

The BTZ black hole with general temperature is described by the
metric

ds2 =
1

z ′2

[
(1− a2 z ′2)dτ ′2 + dx ′2 +

dz ′2

1− a2 z ′2

]

which can be obtained by the scale coordinate transformation

z ′ = az τ ′ = aτ x ′ = ax

from (6). The temperature for this scaled version of the black hole
now becomes

T ′ =
a

2π

Below we work mostly with the temperature T = (2π)−1



Ansatz for the Black Janus

With z = sin y , the BTZ black hole can be rewritten as

ds2 =
1

sin2 y

[
cos2 y dτ2 + dx2 + dy2]

Motivated by the form of this metric, we shall make the following
ansatz for the black Janus solution

ds2 =
dx2 + dy2

A(x , y)
+

dτ2

B(x , y)
, φ = φ(x , y)

It is then straightforward to show that the equations of motion reduce
to

(~∂A)2 − A ~∂2A = 2A− A2 (~∂φ)2

3(~∂B)2 − 2B ~∂2B = 8B2/A
~∂B · ~∂φ− 2B ~∂2φ = 0

where ~∂ = (∂x , ∂y ).



Perturbative approach

As a power series in γ, the scalar field may be expanded as

φ(x , y) = γφ0(x , y) + γ3φ3(x , y) + O(γ5)

Then the scalar equation in the leading order becomes

tan y ∂yϕ− sin2 y ~∂2ϕ = 0

where ϕ(x , y) denotes φ0(x , y)
The leading perturbation of the metric part is of order γ2. For which
we set

A = A0

(
1 +

γ2

4
a(x , y) + O(γ4)

)
, B = B0

(
1 +

γ2

4
b(x , y) + O(γ4)

)
with

A0 = sin2 y , B0 = tan2 y

The leading order equations for the metric part becomes

2a− sin2 y ~∂2a = −4 sin2 y(~∂ϕ)2

2 tan y ∂y b − sin2 y ~∂2b + 4a = 0



Linearized Black Janus

Using the Janus boundary condition φ(x ,0) = γ ε(x) + O(γ3) with the
sign function ε(x), the leading order scalar equation is solved by

ϕ =
sinh x√

sinh2 x + sin2 y

The solution for the geometry part can be found as
a(x , y) = b(x , y) = q(x , y) where

q(x , y) = 3
(

sinh x
sin y

)
tan−1

(
sinh x
sin y

)
+

sinh2 x
sinh2 x + sin2 y

+2+2C
sinh x
sin y

with an integration constant C.
Then the metric for the black Janus can be written as

ds2 =
1− γ2

4 q(x , y)

sin2 y

[
cos2 y dτ2 + dx2 + dy2]+ O(γ4)

−→Exact solution!!



Exact solution for Black Janus

D. Bak, M. Gutperle and R. A. Janik, JHEP 1110, 056 (2011)

ds2 = cot2 udτ2 + F (u, ϕ)
[ du2

sin2 u
+ cot u (log f (ϕ))′dudϕ

+
φ2

as f 2(ϕ)

γ4

(
γ2 sin2 u + cos2 u

[
1− cosh

√
2φasϕ

cosh
√

2φas
+

sinh2√2φasϕ

2 cosh2√2φas

])
dϕ2

]
where

F (u, ϕ) =
[

sin2 u +
cos2 u
f (ϕ)

]−1

and

f (ϕ) =
γ2

1− cosh
√

2φasϕ

cosh
√

2φas



Scalar field at boundary

We begin with the scalar field perturbation.[
∂2

x + 4s∂s (1− s) ∂s

]
ϕ(x , s) = 0

where we introduce s = sin2 y .
This is solved by

ϕ(x , s) =

∫
dk ϕ̃(k)eikxF (ik/2,−ik/2; 1; 1− s)|Γ(1 + ik/2)|2

where F (a,b; c; x) is the hypergeometric function

F (a,b; c; z) =
∞∑

n=0

(a)n(b)n

(c)n
zn

the scalar perturbation at the boundary y = 0 (or s = 0):

ϕ(x , s) = ϕ0(x) + sϕ1(x) + s2ϕ2(x) + · · ·
The regularity of field equation near s = 0 shows that ϕ0(x) has to be
piecewise constant



Example I, Black Janus

First we consider Black Janus: ϕ(x , s = 0) = ϕ0(x) = ε(x).
For this case, one finds ϕ̃(k) = 1/(πik) leading to

ϕ(x , s) =

∫ ∞
0

dk
2 sin kx
πk

F (ik/2,−ik/2; 1; 1− s)|Γ(1 + ik/2)|2

Noting F (ik/2,−ik/2; 1; 0) = 1 and |Γ(1 + ik/2)|2 = πk/2
sinhπk/2 , one

finds
ϕ(x , s = 1) =

∫ ∞
0

dk
sin kx

sinhπk/2
= tanh x

Then using this, one has

ϕ(x , s) =
[
1 + (1− s)

− 1
4∂

2
x

1!2 + (1− s)2

(
− 1

4∂
2
x
)(

1− 1
4∂

2
x
)

2!2 + · · ·
]

tanh x

=
sinh x√

sinh2 x + s
(1)



Example II, Black Janus with three faces

The second is the example where ϕ(x , s = 0) is given by

ϕ(x , s = 0) =

[
2 for 0 ≤ x ≤ l
0 otherwise

For this case,

ϕ(x , s) =

∫ ∞
0

dk
cos k(x − l/2) sin kl

sinhπk/2
F (ik/2,−ik/2; 1; 1− s)

leading to

ϕ(x , s = 1) =
2 sinh l

cosh(2x − l) + cosh l
= tanh x − tanh(x − l)

And
ϕ(x , s) = ϕ0(x , s)− ϕ0(x − l , s)

with ϕ0(x , s) = sinh x√
sinh2 x+s



Example III, periodic case

Consider the periodic case with a period 2l :

ϕ(x , s = 0) =

[
1 for 0 ≤ x < l
−1 for − l ≤ x < 0

With km = π(2m + 1)/l , one finds

ϕ(x , s) =
2π
l

∞∑
m=0

sin kmx
πkm/2

F (ikm/2,−ikm/2; 1; 1− s)|Γ(1 + ikm/2)|2

This sum can be written in terms of elliptic functions.
For a further analysis, it is convenient to use an alternative
expression. Using the translational symmetry and linearity, We may
construct a periodic solution in the form:

ϕ(x , s) =
∞∑

n=−∞
(−1)nϕ0(x − nl , s)

using the solution ϕ0(x , s) = sinh(x)√
sinh2(x)+s

again.
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Figure: Some plots of the function (2) for s = 0, 1/10, 1/2, 1 (from the above)



Generic case

In generic, if the ϕ(x ,0) is give as, at the boundary,

ϕ(x ,0) =
∞∑

n=−∞
αnε(x − ln)

we have the solution

ϕ(x , s) =
∞∑

n=−∞
αnϕ0(x − ln, s)

with ϕ0(x , s) = sinh x√
sinh2 x+s



Gravity sector

Remember the Einstein eq.

(~∂A)2 − A ~∂2A = 2A− A2 (~∂φ)2

3(~∂B)2 − 2B ~∂2B = 8B2/A
~∂B · ~∂φ− 2B ~∂2φ = 0

The back reaction: (in the first leading order of γ

4 sin2 y(~∂ϕ)2 = 4 sin2 y
∑
n1,n2

αn1αn2
~∂ϕ0(x − ln1 , y) · ~∂ϕ0(x − ln2 , y)

Split this into the “diagonal” part

4 sin2 y
∞∑

n=−∞
α2

n(~∂ϕ0(x − ln, y))2

and the “off-diagonal” part

4 sin2 y
∑

n1<n2

2αn1αn2
~∂ϕ0(x − ln1 , y) · ~∂ϕ0(x − ln2 , y).



Diagonal parts

Each source term for the diagonal part is the same as that for the
black Janus up to the translation in x . One may then easily find the
solution for the diagonal part

adiag(x , y) = bdiag(x , y) =
∞∑

n=−∞
α2

n

[
q0(x − ln, y) + Cn

sinh(x − ln)

sin y

]
,

where

q0(x , y) = 3
sinh x
sin y

(
tan−1

(
sinh x
sin y

)
− π

2

)
+ 2 +

sin2 y
sinh2 x + sin2 y

.

Later we shall show that the different choice of Cn are all related by
an appropriate coordinate transformation. Hence we can set Cn = 0
without loss of generality.



Off-diagonal part

Because of translational invariance in x direction, it suffices to
consider the case of n1 = 0 and n2 = 1 with l0 = 0 and l1 = l . This
leads to the equations

−2ac(x , y , l) + sin2 y ~∂2ac(x , y , l) =
4(cosh l + XY )

(1 + X 2)3/2(1 + Y 2)3/2 ,

−2 tan y ∂y bc(x , y , l) + sin2 y ~∂2bc(x , y , l) = 4ac(x , y ; l),

where we have introduced

X =
sinh x
sin y

, Y =
sinh(x − l)

sin y
.

Once the solution of the above equations is given, the full off-diaginal
part of the solution may be given in the form

aoff(x , y) =
∑

n1<n2

2αn1αn2 ac(x − ln1 , y , ln2 − ln1 ),

boff(x , y) =
∑

n1<n2

2αn1αn2 bc(x − ln1 , y , ln2 − ln1 ).

We take the range of x and y as 0 < x < l and 0 ≤ sin y ≤ 1. Then X
and Y can take positive real values.



Remarkably, it turns out that we can find a solution of this equation by
taking the ansatz

ac(x , y , l) =
1√

1 + X 2
√

1 + Y 2
G(m), bc(x , y , l) = H(m)

where

m = (
√

1 + X 2 − X )(
√

1 + Y 2 − Y ).

After some works, we have found the solution in the form

G(m) = G(m, cosh l) ≡ 2m − I(m, cosh l)Gh(m, cosh l),

where the integral I(x , cosh l) is given by

I(m, cosh l) =

∫ m

0
dx
(

x
1 + x2 + 2x cosh l

) 3
2

.

with the homogeneous solution to this equation,

Gh(m, cosh l) =
1

m3/2 (1−m2)
√

1 + m2 + 2m cosh l ,



Off diagonal parts: final form

Including the homogeneous part, we have

ac(x , y , l) =
1√

1 + X 2
√

1 + Y 2

(
G(m, cosh l) + CGGh(m, cosh l)

)
,

bc(x , y , l) =
4m

1 + m2 + 2m cosh l

(
G(m, cosh l) + CGGh(m, cosh l)

)
.

Remember

aoff(x , y) =
∑

n1<n2

2αn1αn2 ac(x − ln1 , y , ln2 − ln1 ),

boff(x , y) =
∑

n1<n2

2αn1αn2 bc(x − ln1 , y , ln2 − ln1 ).



Double interfaces

Consider the boundary condition for the scalar given by

ϕ(x ,0) = α−ε(x) + α+ε(x − l)→ ε(x)− ε(x − l).

(with α− = α+ = 1.)

0 l

(a)

0 l

(b)

Figure: (a) describes the boundary condition, ϕ(x , 0), for α− = −α+ = 1
while (b) for α− = α+ = 1.



The full geometric part of the solution takes the form

a(x , y , l) = q0(x , y) + q0(x − l , y) + 3πY − 2a0
c(x , y , l),

b(x , y , l) = q0(x , y) + q0(x − l , y) + 3πY − 2b0
c (x , y , l),

where a0
c(x , y , l) and b0

c (x , y , l) represent the unit-coefficient
cross-term solution given by

a0
c(x , y , l) =

1√
1 + X 2

√
1 + Y 2

(
G(m, cosh l) +

1
2

∆(l)Gh(m, cosh l)
)
,

b0
c (x , y , l) =

4m
1 + m2 + 2m cosh l

(
G(m, cosh l) +

1
2

∆(l)Gh(m, cosh l)
)
.

with

∆(l) ≡ I(∞, cosh l) =
e

l
2

sinh2 l

(
cosh l E(1− e−2l )− e−lK (1− e−2l )

)
.



Shape of the boundary

For the region 0 < x < l there is no singular term in q0(x , y) and
q0(x − l , y) + 3πY . They behave

q0(x , y) = − 2 sin4 y
5 sinh4 x

+ O(sin6 y), for 0 ≤ x ,

q0(x − l , y) + 3πY = − 2 sin4 y
5 sinh4(x − l)

+ O(sin6 y), for x ≤ l .

On the other hand, the cross term behaves

ac(x , y) = ac
1(x) sin2 y + ac

2(x) sin4 y + O(sin6 y),

bc(x , y) = bc
0(x) + bc

1(x) sin2 y + O(sin4 y)

for 0 < x < l .



Shape of the boundary

Compare the results with the original BTZ metric without any
deformation.

ds2 =
1

sin2 y

[
dx2 + dy2

1 + γ2

4 ah(x , y) + O(γ4)
+

cos2 y dτ2

1 + γ2

4 bh(x , y) + O(γ4)

]

where ah and bh denote the homogeneous part of the solution. Then
by the coordinate transformation,

y ′ = y +
γ2

4
cos y Ah(x , y) + O(γ4),

x ′ = x +
γ2

4
cosh x Bh(x , y) + O(γ4),

one can bring the metric into the original BTZ form

ds2 =
1

sin2 y ′

[
dx ′2 + dy ′2 + cos2 y ′ dτ2

]
.



The resulting form of the coordinate transformation for y ′ reads
explicitly

y ′ = y+
γ2

8

3π sinh(x − l) cos y − 4∆(l)
1
m −m√

m + 1
m + 2 cosh l

sin y cos y

+O(γ4)

for x ≥ l . The boundary defined by y ′ = 0 is determined by the
equation

sin y =
γ2

8

4∆(l)
1
m −m√

m + 1
m + 2 cosh l

sin y − 3π sinh(x − l)

+ O(γ4).

The solution has the form

sin y = γ2f (x) + O(γ4)

with some function f (x).



Boundaries

- 0.5 0.5 1 1.5
x

- 0.3
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Figure: The shape of the boundary in (x , y) space is depicted for γ2 = 0.1,
l = 1 and α− = α+ = 1.
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Figure: The shape of the boundary in (x , y) space is depicted for γ2 = 0.1,
l = 1 and α− = −α+ = 1.



Remarks

We have developed a way to find ADS solution with dilaton which
has piece-wise constant values at the boundary, at least
perturbatively.
For the case with double interfaces (or three faces Janus),
explicit forms of the solutions are given. They are expressed in
terms of elliptic integrals.
Entanglement entropy and Casimir energy have been calculated
based on this solution.
The case of lattice is quite interesting.
Numerical study is under investigation.


